The Central Limit Theorem and Estimation

If we select many, many samples (each of size n) from a parent population with mean μ and standard deviation σ and compute each of the sample means, this collection of sample means (called the sampling distribution of sample means – the SDSM) will be:

1. **normally distributed**, if the parent population is normally distributed. The mean of the SDSM is given by $\mu_\tau = \mu$ and the standard deviation of the SDSM is given by $\sigma_\tau = \frac{\sigma}{\sqrt{n}}$.

 OR

2. **approximately normally distributed**, if the parent population is not normally distributed (provided $n \geq 30$). The mean of the SDSM is given by $\mu_\tau = \mu$ and the standard deviation of the SDSM is given by $\sigma_\tau = \frac{\sigma}{\sqrt{n}}$. As n increases beyond 30, the approximation improves.

Note: in each of the possible scenarios above, the parameter σ_τ is known as the *standard error of the mean*, or the S.E. mean (in class we called σ_τ the standard deviation of the SDSM).

So, assuming that we know both μ and σ (actually somewhat unrealistic in real life) we can calculate probabilities of sample means having certain values. For example, see Class Practices on Sampling Distributions #1 and #2.

However, what is really *more useful* to us is the technique of interval estimation which becomes possible due to the Central Limit Theorem.

Now let us *assume that we do not know* the mean μ of a parent population (finally a realistic assumption) and that we *do know* the standard deviation σ of that same population (unrealistic, but let’s go with it for now). In order to determine an interval estimate for the population mean μ, we select a sample of size n and compute its mean \bar{x}. This \bar{x} becomes a point estimate for μ. We then build the interval estimate by first computing the error of the estimate E which is given by the formula $E = \frac{z\sigma}{\sqrt{n}}$. The z value, also denoted by the notation $z(\alpha/2)$, in this formula is fixed or determined by knowing the level of confidence that is specified in the problem. The level of confidence is then considered to be a probability, or equivalently, an area that is centered under the normal distribution. This allows us to find z by using the table on page 810. Once E has been determined we then compute both the

$LCL = \text{lower confidence limit} = \bar{x} - E$ and
UCL = upper confidence limit $= \bar{x} + E$.

Summary of significant vocabulary associated with Interval Estimation of μ:

parent population – the population that we wish to know something about; also the population from which we select a random sample of size n

SDSM or sampling distribution of sample means – this is the collection of sample means that would be obtained if we were to select *many* samples from a parent population and compute the mean (\bar{x}) of each sample

$\mu_{\bar{x}} = \mu$ is the mean of the SDSM

$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ is the standard deviation of the SDSM

confidence coefficient – this is the z value used in the formula $E = \frac{z\sigma}{\sqrt{n}}$; when the level of confidence is $1 - \alpha$, there will be $\alpha/2$ area in each tail of the SDSM and because of that, we sometimes use the symbol $z(\alpha/2)$

lower confidence limit (LCL) – this is a lower bound on the population mean μ

upper confidence limit (UCL) – this is an upper bound on the population mean μ

level of confidence – a probability that is selected before the two confidence limits are computed; typical levels of confidence are 90%, 95%, and 99%