Class Practice on Trigonometry #1

1. Sketch a right triangle with \(c = 5 \) and \(a = 2 \). Label all sides and angles with appropriate letters.

Using your triangle determine the exact value of each of the following trigonometric ratios. Leave answers in simplified radical form.

a. \(\sin A = \)

b. \(\sin B = \)

c. \(\cos A = \)

d. \(\cos B = \)

e. \(\tan A = \)

f. \(\tan B = \)

2. In a right triangle if \(\cos B = \frac{1}{4} \), draw a triangle that "looks like" this would be true and then determine the exact value of each of the following trigonometric ratios. Leave answers in simplified radical form.

a. \(\sin A = \)

b. \(\sin B = \)

c. \(\cos A = \)

d. \(\cos B = \)

e. \(\tan A = \)

f. \(\tan B = \)
1. Sketch a right triangle with \(c = 5 \) and \(a = 2 \). Label all sides and angles with appropriate letters.

\[
\begin{align*}
\text{B} & \quad \text{a = 2} \\
C & \quad \text{b = } \sqrt{21} \\
A & \quad \text{c = 5}
\end{align*}
\]

\[
a^2 + b^2 = c^2 \\
4 + b^2 = 25 \\
b^2 = 21 \\
b = \sqrt{21}
\]

Using your triangle determine the exact value of each of the following trigonometric ratios. Leave answers in simplified radical form.

a. \(\sin A = \frac{2}{5} \)

b. \(\sin B = \frac{\sqrt{21}}{5} \)

c. \(\cos A = \frac{\sqrt{21}}{5} \)

d. \(\cos B = \frac{2}{5} \)

e. \(\tan A = \frac{\frac{2}{\sqrt{21}}}{\frac{\sqrt{21}}{\sqrt{21} \cdot \sqrt{21}}} = \frac{2\sqrt{21}}{21} \)

f. \(\tan B = \frac{\sqrt{21}}{2} \)

Here we rationalize the denominator.
2. In a right triangle if \(\cos B = \frac{1}{4} \), draw a triangle that “looks like” this would be true and then determine the exact value of each of the following trigonometric ratios. Leave answers in simplified radical form.

Since \(\cos B = \frac{1}{4} \), we need to draw a triangle where the adjacent side is 1 and the hypotenuse is 4 (for angle B).

\[a = 1 \]
\[b = \sqrt{15} \] by using the Pythagorean Theorem
\[c = 4 \]

\[\sin A = \frac{1}{4} \]
\[\sin B = \frac{\sqrt{15}}{4} \]
\[\cos A = \frac{\sqrt{15}}{4} \]
\[\cos B = \frac{1}{4} \]
\[\tan A = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15} \]
\[\tan B = \frac{\sqrt{15}}{1} = \sqrt{15} \]

Here we rationalize the denominator.