When making a $1 - \alpha$ confidence interval estimate for the population mean μ when σ is unknown, the lower confidence limit is:

$$\bar{x} - \frac{t(df, \alpha/2)s}{\sqrt{n}}$$

and the upper confidence limit is $\bar{x} + \frac{t(df, \alpha/2)s}{\sqrt{n}}$, where $n = $ size of sample used to estimate μ

$df = n - 1$

$\bar{x} = $ mean of sample and is the point estimate of μ

$s = $ standard deviation of the sample is the point estimate of σ

$-t(df', \alpha/2) = $ lower confidence limit for the t-distribution

$+t(df', \alpha/2) = $ upper confidence limit for the t-distribution

Example: We want to determine a 98% confidence interval estimate for the number of miles driven in a week by MCC students who are car owners.

We select a random sample of size 51. Since we have no information about the shape of the distribution of miles and since $n \geq 30$, we can use the t-distribution.

Suppose that the sample mean $\bar{x} = 140$ miles and the sample standard deviation $s = 11.5$ miles.
Solution

Since we want the confidence to be 98%, that means \(\alpha = 2\% = 0.02 \). So, \(\alpha/2 = 0.01 \) is in each tail of the t-distribution.

The error of the estimate \(E = \frac{t(50, .01)s}{\sqrt{n}} = \frac{(2.40)(11.5)}{\sqrt{51}} = \frac{27.6}{7.141428429} = 3.86477 \approx 4 \)

So our lower confidence limit is \(LCL = 140 - 4 = 136 \) miles,

and our upper confidence limit is \(UCL = 140 + 4 = 144 \) miles

So, based on this one sample we can say that we are 98% confident that the real population mean \(\mu \) (miles driven per week by MCC students who are car owners) lies between 136 miles and 144 miles.

In symbols, \(P(136 < \mu < 144) = 0.98 \). The picture below summarizes what we have done.

Note: The probability of \(\mu \) NOT lying between 136 and 144 is 2% = 0.02, which means that we can think of \(\alpha \) as being the probability that we have made an error in our estimate of \(\mu \).