Ready, Tech, Go:
If technology has revolutionized the teaching of statistics, why are we still teaching the same old course?

Paul Velleman - Cornell University
pfv2@cornell.edu
Dick De Veaux - Williams College
Dave Bock - Ithaca High School
Assumptions for Inference (and the conditions that confirm or override them.)

Proportions (z)
- One Proportion z
 1. individuals are independent
 2. sample is sufficiently large
- Two Proportion z
 1. samples are independent
 2. data in each sample are independent
 3. both samples are sufficiently large

Means (t)
- One Sample t (df = n - 1)
 1. individuals are independent
 2. population has a Normal model
- Matched Pairs (df = n - 1)
 1. data are matched
 2. individuals are independent
 3. population of differences Normal

Two independent samples (df from formula, or smaller n – 1 if necessary)
 1. samples are independent
 2. data in each sample independent
 3. both populations are Normal

Distributions (ChiSquare)
- Goodness of Fit (df = cells – 1; one variable, one sample compared to population model)
 1. data are counts
 2. data in sample are independent
 3. sample is sufficiently large
- Homogeneity (df = (r – 1)(c – 1); samples from many populations compared on one variable)
 1. data are counts
 2. data in samples are independent
 3. samples are sufficiently large
- Independence (df = (r – 1)(c – 1); sample from one population classified on two variables)
 1. data are counts
 2. data are independent
 3. sample is sufficiently large

Regression coefficients (t, df = n – 2)
- Association between two measured variables (β = 0?)
 1. form of relationship is linear
 2. errors are independent
 3. variability of errors is constant
 4. errors have a Normal model

Copyright 2002 Dave Bock, Dick Deveaux, and Paul Velleman
In August 2000, the Gallup Poll asked 507 randomly sampled adults the question, "Do you think the possession of small amounts of marijuana should be treated as a criminal offense?" Of these, 47% responded "No." What can we conclude from this survey?

To answer this question, we'll build a confidence interval for the proportion of all U.S. adults who would respond "No." There are four steps to building a confidence interval for proportions:

1. **Think**
 - **Parameter:** Identify the parameter you wish to estimate. This is the value we hope to catch within our confidence interval. Choose and state a confidence level.

2. **Plan**
 - **Random condition:** Gallup drew a random sample from all U.S. adults. We do not have details of the randomization, but we assume that we can trust it.
 - **10% condition:** Although sampling was necessarily without replacement, there are many more U.S. adults than were sampled. The sample is certainly less than 10% of the population.
 - **Success/failure condition:**

 \[
 n \hat{p} = 507 \times 0.47 = 238.3 \geq 10 \quad \text{and} \\
 n \hat{q} = 507 \times 0.53 = 268.7 \geq 10

 \]

 So our sample is large enough.

 Under these conditions, the sampling distribution of the proportion can be modeled by a Normal model.

 We will find a one-proportion z-interval.

Copyright 2001 Dick Deveaux, Paul Velleman, and Dave Bock.
Show Mechanics Construct the confidence interval.

We could informally use 2 for our critical value, but 1.96 is more accurate.

Reality Check The confidence interval is centered at the sample proportion and about as wide as we might expect for a sample of 500.

Tell Interpretation Tell what the confidence interval means, in the proper context.

We know: \(n = 507, \hat{p} = 0.47 \)

\[
\text{So } \text{SE}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.47 \times 0.53}{507}} = 0.022
\]

Because the sampling model is Normal, for a 95\% confidence interval, the critical value \(z^* = 1.96 \).

From these, we find the margin of error as

\[
m.o.e. = z^* \times \text{SE}(\hat{p}) = 1.96 \times 0.022 = 0.43
\]

So the 95\% confidence interval is:

\[
0.47 \pm 0.043 \text{ or (0.427, 0.513)}
\]

We can be 95\% confident that between 42.7\% and 51.3\% of all U.S. adults think possession of small amounts of marijuana should not be treated as a criminal offense.

What Can Go Wrong?

Confidence intervals are powerful tools. Not only do they tell what we know about the parameter value, but—more important—they also tell what we don’t know. But in order to use them effectively, you must be clear about what you say about them.

Don’t Misstate What the Interval Means

- **Don’t suggest that the parameter varies.** A statement like “There is a 95\% chance that the true proportion is between 42.7\% and 51.3\%” sounds as though you think the population proportion wanders around and sometimes happens to fall between 42.7\% and 51.3\%. When you interpret a confidence interval, make it clear that you know that the population parameter is fixed and that it is the interval that varies from sample to sample.

- **Don’t claim that other samples will agree with yours.** Keep in mind that the confidence interval makes a statement about the true population proportion. An interpretation such as “In 95\% of samples of U.S. adults the proportion who think marijuana should be decriminalized will be between 42.7\% and 51.3\%” is just wrong. The interval isn’t about sample proportions, but about the population proportion.

- **Don’t be certain about the parameter.** Saying “Between 42.1\% and 61.7\% of sea fans are infected” asserts that the population proportion cannot be outside that interval. Of course, we can’t be absolutely certain of that. (Just pretty sure.)

- **Don’t forget: It’s the parameter.** Don’t say, “I’m 95\% confident that \(\hat{p} \) is between 42.1\% and 61.7\%.” Of course you are—in fact, we calculated that \(\hat{p} = 51.8\% \) of the fans in our sample were infected. So we already know the sample proportion. The confidence interval is about the (unknown) population parameter, \(p \).

- **Don’t claim to know too much.** Don’t say, “I’m 95\% confident that between 42.1\% and 61.7\% of all the sea fans in the world are infected.” You didn’t sample from all the sea fans in the world. Just those of this type on the Las Redes Reef.

- **Do take responsibility.** Confidence intervals are about uncertainty. You are the one who is uncertain, not the parameter. You have to accept the responsibility and consequences of the fact that not all the intervals you compute will capture the true value. In fact, about 5\% of the 95\% confidence intervals you find will fail to capture the true value of the parameter.

You can say, “I am 95\% confident that between 42.1\% and 61.7\% of the sea fans on the Las Redes Reef are infected.”
S.8.2 Not currently available.